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Abstract. We study transport in ferromagnetic single-electron transistors. The non-equilibrium spin ac-
cumulation on the island caused by a finite current through the system is described by a generalized
theory of the Coulomb blockade. It enhances the tunnel magnetoresistance and has a drastic effect on the
time-dependent transport properties. A transient decay of the spin accumulation may reverse the electric
current on time scales of the order of the spin-flip relaxation time. This can be used as an experimental
signature of the non-equilibrium spin accumulation.

PACS. 73.40.Gk Tunneling – 75.70.-i Magnetic films and multilayers – 73.23.Hk Coulomb blockade;
single-electron tunneling – 75.70.Pa Giant magnetoresistance

1 Introduction

Single-electron tunneling has been an active area of re-
search during the last decade (for a review see Ref. [1]).
In a double tunnel junction system, the Coulomb blockade
effect is pronounced when the charging energy of the is-
land is larger than the thermal energy, e2/2C > kBT (C is
the capacitance of the island), and the tunnel resistances
are larger than the quantum resistance R > RK = h/e2.
So far most of the research on the double tunnel systems
has been in systems using metals (normal or supercon-
ducting) or semiconductor hetero-structures [1,2]. The so-
called orthodox theory of single-electron tunneling [1] has
been very successful in explaining experiments where the
single-particle energy separation is smaller than the ther-
mal energy.

Quite unrelated, the giant magnetoresistance in
magnetic multilayers and the spin-tunneling magnetoresis-
tance in ferromagnet-insulator-ferromagnet systems have
attracted great interest [3,4]. In a magnetic multilayer or
in a trilayer “spin-valve” structure the magnetization of
the adjacent magnetic layers may vary. When the layers
are antiparallel, an external magnetic field can align the
magnetization of the ferromagnetic layers. The observed
decrease in the resistance is a result of spin-dependent
scattering in the materials.

In recent experiments Ono et al. studied the proper-
ties of ferromagnetic single-electron transistors (FSETs)
[5,6]. This is a new and interesting system in which both
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the charging aspect due to the Coulomb energy of the
excess charge on the island and the magnetoresistance
due to the spin-dependent tunneling rates are of impor-
tance. Ono et al. found an enhanced magnetoresistance
in the Coulomb Blockade regime and a monotonic phase
shift of the Coulomb oscillations induced by the mag-
netic field. The enhancement of the magnetic valve ef-
fect in the Coulomb blockade regime has been ascribed
to co-tunneling, which is of a higher order in the tunnel-
ing resistances and so the difference in the spin-dependent
tunneling between the antiparallel and the parallel config-
uration is larger [6,7]. The magneto-Coulomb oscillations
can be explained in terms of changes in the free energy
of the island electrode and the leads in the presence of
an external magnetic field [8]. Coulomb charging effects
have also been seen in discontinuous multilayers [9] and in
small cobalt clusters [10].

A generalization of the orthodox theory to describe a
FSET by introducing spin-dependent tunneling rates has
been presented by Barnas and Fert [11] and Majumdar
and Hershfield [12]. However they neglected the effects of
a non-equilibrium spin accumulation on the island caused
by the spin-dependent tunneling rates, which can have a
drastic effect on the transport properties of the ferromag-
netic single-electron transistor.

In a ferromagnetic single-electron transistor, the tran-
sition rates for tunneling into or out of the island de-
pend on the electron spin. An electric current through
the system therefore implies a spin current out of or
into the island (∂s/∂t)tr. This creates a non-equilibrium
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excess spin on the island. The excess spin s decays by spin-
flip relaxation so that s = (∂s/∂t)trτsf , where τsf is the
spin-flip relaxation time. The non-equilibrium spin accu-
mulation on the island is equivalent to a non-equilibrium
chemical potential difference ∆µ between the spin-up and
the spin-down states. In the case of a normal metal is-
land this chemical potential difference can be evaluated
as ∆µ = sδ, where δ is the single-particle energy spac-
ing at the Fermi energy (inverse density of states). The
chemical potential difference modifies the transport prop-
erties. The non-equilibrium spin accumulation is impor-
tant for the transport properties of the FSET when the
non-equilibrium chemical potential difference ∆µ is of the
same order as the Coulomb charging energy Ec = e2/2C.
The spin current is of the same order as the electric cur-
rent, e(∂s/∂t)tr ∼ I. We are interested in voltages of the
order of the Coulomb gap, so we have I ∼ GEc/e, where
G is the typical junction conductance. From these crude
considerations we deduce that the non-equilibrium spin
accumulation is important when the spin-flip relaxation
time and/or the single-particle energy separation are suf-
ficiently large, i.e. when

τsfδ/h > R/RK, (1)

irrespective of Ec.
The spin-flip relaxation time is crucial for the ob-

servation of the non-equilibrium spin accumulation. The
spin-flip scattering in clean metals at low temperatures is
dominated by the spin-orbit scattering, τsf ≈ τso. Since
spin-orbit coupling is a relativisitic effect, it increases with
the atomic number Z of the metal. The single-particle en-
ergy spacing on the island increases with decreasing num-
ber of atomsN on the island as δ ∼ EF/N , whereEF is the
Fermi energy. Thus the size of the island must be small for
heavy elements in order to observe big effects of the spin-
accumulation. Let us first estimate the spin-flip relaxation
time in an island with an ideal clean surface, where the
spin-flip scattering at the boundary of the island can be
disregarded. The spin-flip relaxation time in single-crystal
aluminium is (τsf ∼ 10−8 s at T = 4.3 K [13] (τsf ∼ 10−10 s
in polycrystalline aluminium [14]) and τsf ∼ 10−11 s for
gold [15]. The Fermi energy is EF ∼ 10 eV, and the spin
accumulation may therefore be expected to play a signif-
icant role in an Al island with less than 108 atoms (106

atoms in polycrystalline aluminium). In the limit τsf → 0
or for a large island, our results reduce to the models in
references [11,12], where the spin was assumed to be equi-
librated.

Spin-accumulation is important in small systems also
when the boundary roughness gives a dominant contribu-
tion to the spin-flip scattering. In such a case, the spin-
orbit relaxation time is τso = fτ , where f is the ratio
of non spin-flip to spin-flip scattering rates and τ is the
momentum relaxation time. For a small system with an
ideally rough surface τ ∼ L/vF, where L is the size of
the system and vF is the Fermi velocity. Abrikosov and
Gor’kov calculated [16] f = (αZ)−4, where α = e2/(~c) '
1/137 is the fine-structure constant, in rough agreement
with experiments [17]. Using L ∼ aN1/3, where a ∼ 1/kF

is the lattice constant τ ∼ N1/3/(~EF) and the relation
(1) reads for small particles with rough boundaries:

N <

(
f
RK

R

)3/2

· (2)

Assuming that the tunnel resistance is of the order of the
quantum resistance (e.g. in the measurement by Ono et al.
[6] R/RK ∼ 1), and using estimates for the ratio of non
spin-flip to spin-flip scattering rates from the measure-
ments in reference [17], we expect to see effects of a non-
equilibrium spin accumulation in Cu (log f ∼ 2.1 − 2.4)
when N < 103, in Al (log f ∼ 2.8 − 3.6) when N <
104 − 105, in Na (log f ∼ 4.2− 5.3) when N < 106 − 109

and in Li (log f ∼ 4.9 − 7) when N < 107 − 1010. For
smooth boundaries, these numbers should be correspond-
ingly larger. For our purposes, the study of effects of a
non-equilibrium spin accumulation, one should choose a
light metal with a long spin-orbit relaxation time (a large
parameter f).

Note that the orthodox model is still valid for the
small clusters described above. For a small island, the ca-
pacitance scales like C ∼ aN1/3. The ratio between the
single-particle energy spacing and the Coulomb charging
energy is therefore δ/Ec ∼

(
EFa/e

2
)
N−2/3. The prefac-

tor is
(
EFa/e

2
)
∼ 1, and thus the single-particle spacing is

much smaller than the Coulomb charging energy. Our gen-
eralized orthodox model is therefore valid when the tem-
perature is larger than the single-particle energy spacing.
For lower temperatures, the single-particle energy spacing
will also appear in the current-voltage characteristics.

“Modern” metals, like arm-chair nanotubes [18] or
(magnetic) semiconductor heterostructures [19] can also
be interesting as island materials. The first because of
a possible huge spin-flip relaxation time (Z = 6 for
carbon) and the latter since islands containing a small
number of electrons can be created by depletion of the
two-dimensional electron gas [1]. However, in these sys-
tems quantum size effects start to play a role which have
our attention.

In small tunneling systems where equation (1) is satis-
fied, the spin-flip relaxation time is longer than the charge
relaxation time RC. This can be seen from equation (1),
τsf > (2Ec/δ)RC, and noting that the charging energy is
larger than the single-particle energy spacing for all but
in few-electron systems. Hence the long-time response of
the system is dominated by the spin dynamics. We will
demonstrate that this feature can be used as an exper-
imental signature of the non-equilibrium spin accumula-
tion.

The paper is organized in the following way. In the
next Section 2 we model the transport in the ferro-
magnetic single-electron transistor by generalizing the
orthodox theory. The simple case of a halfmetal-
lic ferromagnet-normal metal-halfmetallic Ferromagnetic
(HF/N/HF) FSET can be treated analytically and is con-
sidered in Section 3. The transport properties in the gen-
eral case are investigated numerically in Section 4. Finally
our conclusions are presented in Section 5. Selected results
of the present work have been presented in reference [20].
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Fig. 1. The single electron transistor consisting of a (magnetic)
island coupled to two (magnetic) reservoirs by tunnel junctions.
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Fig. 2. The non-equilibrium chemical potentials in the reser-
voirs and the island at a finite source-drain voltage and a finite
current.

2 Model

We consider the situation shown in Figure 1. A (ferromag-
netic or normal) metal island is attached to two (ferromag-
netic or normal) leads by two tunnel junctions. There is
an applied source-drain voltage V between the right and
the left reservoir and a gate voltage source coupled capac-
itively to the island. We assume collinear magnetization
in the leads and the island. The direction of the magne-
tizations in the island and the right lead can be paral-
lel or antiparallel to the direction of the magnetization
in the left reservoir as depicted by the broken arrows in
Figure 1. When the coercive fields of the magnets are dif-
ferent different configurations of the magnetizations can
be realized by sweeping an external magnetic field. We ig-
nore for simplicity the complications due to the possible
appearance of a magnetic domain structure in the ferro-
magnets. The tunnel junctions have a capacitance Ci and
spin-dependent conductances Giσ , where i = 1, 2
denotes the first and the second junction and σ
denotes up (+) or down (−) spin electrons. The
spin-dependent conductance of the first junction, G1σ,
is proportional to the spin-dependent density of states
in the left reservoir at the Fermi level NLσ(0), the is-
land at the Fermi level NIσ(0) and the angular averaged
spin-dependent tunneling probability at the Fermi level,
G1σ = 2πe2NLσ(0)NIσ(0)T1σ(0)/~ [21]. In a ferromagnet
the tunneling probability is significantly different for the
s- and d-electrons. The density of states and the tunneling
probabilities should therefore be regarded as phenomeno-
logical parameters which are to be constant in an inter-
val of the order of the applied source-drain voltage at the
Fermi surface. This assumption has been found to be valid
if the applied source-drain voltage is lower than 100 mV
[11]. The expression for the spin-dependent conductance
of the second junction is similar. We take the gate capac-
itance Cg to be small compared to the junction capaci-

tances C1 and C2 and other impedances are disregarded.
The energy difference associated with the tunneling of one
electron into the island through junction i is [1]

Ei(V, q) = κieV +
e(q − e/2)

C1 + C2
,

where q = −ne+ q0 is the charge of the island, the total
capacitance is 1/C = 1/C1 + 1/C2 and κi = C/Ci. The
number of excess electrons on the island is n. The offset
charge q0 is controlled by the gate voltage coupled to the
island by the gate capacitance, q0 = CgVg.

At a finite current through the island, the energy dia-
gram in Figure 2 should be considered. Here we show the
equilibrium chemical potentials in the left and the right
reservoir and the non-equilibrium chemical potentials for
the spin-up and the spin-down electrons in the island. It is
assumed that the energy relaxation in the island is much
faster than the time between the tunneling events ∼ RC,
so that the distributions of the energy levels for the dif-
ferent spins are described by Fermi functions. The non-
equilibrium chemical potentials in the island are spin-split
by ∆µ due to the spin accumulation. The non-equilibrium
chemical potential difference causes novel phenomena on
the single-electron transistor to be discussed below.

The tunnel conductances are taken to be much smaller
than the quantum conductance Giσ � GK = 1/RK. Thus
we disregard co-tunneling [7] and calculate the current-
voltage characteristics in the system by using the semiclas-
sical master equation. The transition rates can be found
from Fermi’s Golden Rule [1]. The spin-dependent tunnel-
ing rates are

−−→
Γ 1σ

n+1,n =
1

e2
G1σF (E1(V, q)− σ∆µ/2), (3)

←−−
Γ 1σ

n,n+1 =
1

e2
G1σF (−E1(V, q) + σ∆µ/2),

←−−
Γ 2σ

n+1,n =
1

e2
G2σF (E2(−V, q)− σ∆µ/2),

−−→
Γ 2σ

n,n+1 =
1

e2
G2σF (−E2(−V, q) + σ∆µ/2).

−−→
Γ 1σ

n+1,n denotes transition from the left reservoir to the
island, so that the number of electrons on the island is
changed from n to n+ 1, etc. and

F (E) =
E

1− exp(−E/kBT )
,

where kBT is the thermal energy. We also define the total

forward rates
−→
Γ i =

−→
Γ i↑ +

−→
Γ i↓, where i = 1, 2, and analo-

gous backward rates. The combined rate for an increase of
the number of excess electrons on the island is Γn+1,n =
−→
Γ 1

n+1,n +
←−
Γ 2

n+1,n and analogous Γn,n+1 =
←−
Γ 1

n,n+1+
−→
Γ 2

n,n+1. The master equation which determines the prob-
ability pn of having n excess electrons on the island is

dpn
dt

= −pn (Γn−1,n + Γn+1,n)

+pn+1Γn,n+1 + pn−1Γn,n−1. (4)
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In the stationary state dpn/dt = 0 and the detailed bal-
ance symmetry gives Γn+1,npn = Γn,n+1pn+1. The current

through the first junction is I1 = (I↑1 +I↓1 ) , where the cur-
rent of electrons with spin σ is

Iσ1 = e
∑
n

pn

(−−→
Γ 1σ

n+1,n −
←−−
Γ 1σ

n−1,n

)
.

In the second junction the current is I2 = (I↑2 + I↓2 ),

Iσ2 = e
∑
n

pn

(−−→
Γ 2σ

n−1,n −
←−−
Γ 2σ

n+1,n

)
.

The transport of spins into the island is determined by(
ds

dt

)
tr

=

(
d (N↑ −N↓)

dt

)in

−

(
d (N↑ −N↓)

dt

)out

(5)

= (I↑1 − I
↑
2 − I

↓
1 + I↓2 )/e.

In the stationary situation we can use the current conser-

vation I↑1 + I↓1 = I↑2 + I↓2 and find(
ds

dt

)st.

tr

= 2(I↑1 − I
↑
2 )/e = 2(I↓2 − I

↓
1 )/e. (6)

The spin balance is

ds

dt
=

(
ds

dt

)
tr

+

(
ds

dt

)
rel

, (7)

where (ds/dt)rel is the spin-flip relaxation rate. In equi-
librium there are s0 spins on the island (for a normal
metal island s0 = 0). The chemical potential is µ0. The
non-equilibrium spin-dependent chemical potentials are
µ↑ = µ0 + δµ+∆µ/2 and µ↓ = µ0 + δµ−∆µ/2. The total

number of spins on the island is s = s0+[(δµ+∆µ/2)δ−1
↑ −

(δµ−∆µ/2)δ−1
↓ ], where δ−1

σ is the spin-dependent density
of states. The spin-flip relaxation rate is(

ds

dt

)
rel

= −
s− s

τsf
= −

∆µ

τsfδ
· (8)

In the limit of fast spin-flip relaxation (τsf → ∞), the
number of spins on the island is s = s0 + δµ(δ−1

↑ − δ
−1
↓ ).

Equation (7) determines the non-equilibrium chemical po-
tential shift ∆µ. Here τsf is the spin-flip relaxation time
in the island and δ−1 = (δ−1

↑ + δ−1
↓ )/2 is the average den-

sity of states for spin up and spin down electrons at the
Fermi level in the island (the inverse single-particle energy
spacing). Equation (8) effectively includes many-body ef-
fects. The excess spin is related to the energy difference be-
tween spin-up and spin-down states by s− s = χs∆µ/µ

2
B,

where χs is the spin susceptibility (for noninteracting elec-
trons χs = µ2

Bδ
−1). In the stationary state (dpn/dt = 0,

ds/dt = 0), the spin balance (7) can be written as

Is = e

(
ds

dt

)
tr

= Gs2∆µ/e, (9)

1
G

2
G

1
G

G
s Cs

2
G

2
C /2

1
C /2

1
C /2

2
C /2

Fig. 3. The equivalent circuit for the current-voltage response
of the system.

where the spin-flip conductance is defined by

Gs =
e2

2τsδ
· (10)

From the equations for the tunneling rates (3) and the
spin balance (7), it is not directly obvious that there is
only one unique solution for the non-equilibrium chemical
potential difference ∆µ for a given set of parameters (tem-
perature, gate voltage, source-drain voltage, capacitances
and conductances). If equation (7) would be fulfilled for
multiple solutions ∆µ for a given set of parameters, the
current-voltage characteristics has a hysteretic behavior,
with a solution ∆µ depending on the history. However, by
extensive analytical and numerical studies with many dif-
ferent parameters to be presented below we always found
only one unique solution of equation (7).

In this orthodox model the problem can be mapped on
the equivalent circuit in Figure 3 by introducing a “spin-
flip capacitance” Cs ≡ e2/2δ, so that

(es)/2 = Cs(∆µ/e), ∆µ/s = e2/(2Cs) = δ.

This “charging energy” of the spin-flip capacitance is thus
simply the single-particle energy cost of a spin-flip, δ, or
more generally, the inverse of the magnetic susceptibility
µ2

B/χs.
Let us first discuss the situations in which ∆µ van-

ishes identically in the stationary state. From the expres-
sions for the spin transport (5), the current conservation
through the two junctions, I = I1 = I2, and the spin-
dependent rates (3), we see that when ∆µ = 0 the spin-
dependent currents are related to the total current by

I↑i =
1

1 +Gi↓/Gi↑
I,

I↓i =
1

1 +Gi↑/Gi↓
I,

where i = 1, 2,

Is = 2I

(
1

1 +G1↓/G1↑
−

1

1 +G2↓/G2↑

)
·
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From this relation we can make the following observa-
tions. First, we see that in the symmetric case, G1↑/G1↓ =
G2↑/G2↓, the spin-current is zero for∆µ = 0 and therefore
∆µ = 0 is a solution of the spin balance equation (7) for
any source-drain voltage V , gate voltage Vg and temper-
ature T , i.e. there is a solution with zero non-equilibrium
chemical potential shift. This symmetry is expected for a
structure of the type (Ferromagnet A- Ferromagnet B -
Ferromagnet A) with magnetization configuration ↑↑↑ or
↑↓↑, which is the case for the device measured in refer-
ences [5,6]. Thus in this case our theory reduces to those
in references [11,12], where the spins were assumed to be
equilibrated. Second, we find that for a general system in
the Coulomb blockade regime the current is zero, I = 0,
and hence a vanishing non-equilibrium chemical potential
difference ∆µ = 0 is a solution in the Coulomb blockade
regime. This is physically reasonable since it means that
there is no spin accumulation on the island when there is
no current flowing through the junctions. The Coulomb
gap in the current-voltage characteristics is not modified
by the spin accumulation.

3 Analytical results for a halfmetallic
ferromagnet/normal metal/halfmetallic
ferromagnet FSET

We will now discuss an idealized case for which an analytic
expression for the current-voltage can be derived at zero
temperature. Let us assume that the leads are halfmetallic
ferromagnets and the island is a normal metal. The density
of states at the Fermi energy vanishes for the minority
spins in a halfmetallic ferromagnet. The capacitances are
taken to be symmetric, C1 = C2 = C, and the gate voltage
is tuned so that the offset charge is zero q0 = 0. When the
direction of the magnetizations in the ferromagnetic leads
are antiparallel the tunnel conductances are

GAP
1↑ = G1, G

AP
1↓ = 0, GAP

2↑ = 0, GAP
2↓ = G2.

The conductances GAP
1↓ and GAP

2↑ are zero, since there are
no spin-down states at the Fermi surface in the left reser-
voir and there are no spin-up states at the Fermi surface
in the right reservoir. The electric current is I = I↑1 and
the spin-current is

e

(
ds

dt

)
tr

= 2(I↑1 − I
↑
2 ) = 2I.

The spin-current is directly proportional to the current for
any temperature T and source-drain voltage V . In the ab-
sence of spin-flip relaxation, τsf →∞, the current through
the system vanishes, because an electron cannot propagate
from the left reservoir to the right reservoir without spin-
flip. The master equation can be solved exactly at zero
temperature for specific voltages V AP

m [22]:

1

2

(
eV AP
m −∆µ

)
= Ec

(
m+

1

2

)
,

where Ec = e2/2C is the Coulomb charging energy and m
is an integral number. The non-vanishing rates are

−→
Γ 1↑

n+1,n =
1

e2
G1Ec(m− n)Θ(m − n), (11)

←−
Γ 1↑

n,n+1 = −
1

e2
G1Ec(m− n)Θ(n−m),

←−
Γ 2↓

n+1,n = −
1

e2
G2Ec(m+ n+ 1)Θ(−m− n− 1),

−→
Γ 2↓

n,n+1 =
1

e2
G2Ec(m+ n+ 1)Θ(m+ n+ 1),

where Θ(x) is the Heaviside function. The probability of
finding n electrons on the island is (n ≤ m) [22]

pn(m) =

(
G1

G2

)n
(m!)2

(m− |n|)!(m+ |n|)!
p0(m)

and p0(m) can be found from the normalization condition∑
n pn(m) = 1 [22]. The current is

I = G1,2

(
V AP
m −

∆µ+ Ec

e

)
,

where we have defined the conductance for the two
junctions in series, G1,2 = G1G2/(G1 + G2). The non-
equilibrium chemical potential difference is determined by
equation (9) which is simplified to I = Is/2 = Gs∆µ/e as

∆µ =
G1,2

Gs +G1,2

(
eV AP
m −Ec

)
.

The current in the system can then be found to be

IAP =
GsG1,2

Gs +G1,2

(
Vm −

Ec

e

)
(12)

at specific voltages determined by

eV AP
m = Ec

(
2m

Gs +G1,2

Gs
+ 1

)
.

We see from the current (12) that the Coulomb blockade
threshold is unchanged as expected. On entering the is-
land from one of the leads the electrons must flip their
spins in order to be able to tunnel through the other lead.
The total conductance of the system is thus given by the
three resistances in series, 1/GAP

tot = 1/Gs + 1/G1 + 1/G2

as can be seen from the equivalent circuit in Figure 3. No
instabilities (i.e. multiple solutions of the non-equilibrium
chemical potential difference ∆µ for a given set of param-
eters) exist.

For a parallel orientation of the magnetizations in the
two leads, where ∆µ = 0, the current-voltage characteris-
tics is [22]

IP = G1,2(V P
m −

Ec

e
), (13)

where eV P
m = Ec(2m + 1). Note that the specific volt-

ages for which we have determined the current differ
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for the parallel and the antiparallel situation. The junction
magnetoresistance is determined by

JMR = (IP − IAP)/IP (14)

at the same voltages, which we cannot calculate ex-
actly. At high source-drain voltages at which the Coulomb
charging effects can be disregarded we see from equa-
tions (12, 13) and Figure 3 that the magnetoresistance
for the system is

JMR =
G1,2

Gs +G1,2
·

In the limit of no spin-flip relaxation, τsf →∞ (Gs → 0),
the junction magnetoresistance is 100 % since the current
vanishes in the antiparallel configuration and in the limit
of perfect spin-flip relaxation, τsf → 0 (Gs → ∞), the
junction magnetoresistance vanishes.

4 General configurations: Numerical results
and discussions

In the general situation with arbitrary junction conduc-
tances and capacitances and at finite temperatures, the
spin-current and the electric current in the system have
to be calculated numerically. In experiments the tunnel
conductances of the two junctions depend strongly on the
thickness of the oxide tunnel barriers. We therefore present
numerical results for a variety of possible realizations of
the junction parameters.

We choose symmetric capacitances C1 = C2 = C in
our calculations. The important energy scale is then the
Coulomb energy Ec = e2/2C and we scale the other rele-
vant energies by this energy. The spin-dependent junction
conductances in the two junctions are described in units
of a typical junction conductance G, so that the electric
current and the spin-current are calculated in units of the
typical current Ge/2C.

Let us first consider the DC transport properties. In a
calculation of the current through the system for a given
source-drain voltage V , we must first determine the non-
equilibrium chemical potential difference ∆µ by the spin
balance on the island (9). The solution of this equation is
given by the intersection of the spin-current into or out
of the island Is(∆µ) and the straight line Gs2∆µ/e which
describes the spin-flip relaxation in the island, where the
spin-flip conductance Gs was defined in equation (10).

As we have pointed out in the previous chapter, the
non-equilibrium spin does not modify the Coulomb gap.
However it does affect the current when the source-drain
voltage is larger than the Coulomb gap. We show in Fig-
ure 4 the current as a function of the source-drain voltage
V for a system consisting of G1↑/G = 0.3, G1↓/G = 0.1,
G2↑/G = 3, G2↓/G = 6, C1 = C2 = C, q0 = 0 and the
thermal energy kBT = 0.02Ec. The upper curve shows
the current when spin relaxation is fast Gs/G = 1000,
and the lower curve shows the current in the case of slow
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Fig. 4. The electric current I as a function of the source-drain
voltage for different spin relaxation conductances: Gs/G =
1000 (upper line) and Gs/G = 0 (lower line). The system pa-
rameters are G1↑/G = 0.3, G1↓/G = 0.1, G2↑/G = 3, G2↓ = 6,
T = 0.02Ec, q0 = 0, C1 = C2 = 1.0.

spin relaxation, Gs/G = 0. The Coulomb blockade thresh-
old for low source-drain voltages is clearly seen and the
steplike structure for higher voltages called the Coulomb
staircase resulting from the discrete charging of the island
[1]. The Coulomb blockade and the Coulomb staircase
are smeared by the thermal fluctuations. Since the con-
ductances of the tunnel junctions are spin-dependent, the
spin-flip relaxation on the island is important for the cur-
rent. The current increases with increasing spin-flip con-
ductance Gs (decreasing spin-flip relaxation time τsf). In
the case of fast spin-flip relaxation (Gs/G = 1000), the
spin-accumulation is vanishing small, and the steps occur
at eV = (2n+1)e2/2C, where n = 0, 1, 2, ... ForGs/G = 0,
there is a spin-accumulation when eV > e2/2C, so that
the relative energy difference associated with the tunnel-
ing of one electron onto the island Ei(V, q) − σ∆µ/2 is
spin-dependent. Hence, the spin-degenerate staircase at
eV = (2n + 1)e2/2C for n = 1, 2, 3... splits into two
peaks, where the splitting is proportional to the spin-
accumulation. This can be seen in the lower curve in Fig-
ure 4, where the second staircase (2n+ 1 = 3) occurs at a
voltage lower than 3e2/2C [23].

Another typical experiment on the single-electron
transistor is to measure the differential conductance in the
linear source-drain voltage regime as a function of the gate
voltage Vg (q0 = VgCg). We show in Figure 5 the influence
of the spin-flip relaxation in the island on the differential
conductance. The system is described by G1↑/G = 3.0,
G1↓/G = 0.2, G2↑/G = 0.1, G2↓/G = 2.0, C1 = C2 = C
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Fig. 5. The conductance dI/dV as a function of the gate-
voltage Vg for different spin-relaxation conductances: Gs/G =
500 (upper line), Gs/G = 0.5 (mid line) and Gs/G =
0.005 (lower line). The system parameters are G1↑/G = 3.0,
G1↓/G = 0.2, G2↑/G = 0.1, G2↓ = 2.0, T = 0.1Ec, q0 = 0,
C1 = C2 = 1.0.

and the thermal energy is kBT = 0.1Ec. The curves show
the differential conductance as a function of the gate volt-
age. The upper curve is calculated for fast spin relaxation
Gs/G = 500, the mid curve is for intermediate spin re-
laxation Gs/G = 0.5 and the lower curve is for slow spin
relaxation Gs/G = 0.005. The typical oscillatory depen-
dence of the differential conductance with respect to the
gate voltage is seen. In the same way as the current at
high voltages increases with increasing spin-flip relaxation
in Figure 4, we see that the differential conductance in-
creases with increasing spin-flip conductance (decreasing
spin-flip relaxation time). As usual the peaks in the con-
ductance as a function of the gate voltage increases with
decreasing temperature (not shown) [1].

The junction magnetoresistance is the relative differ-
ence in the resistance on switching the directions of the
magnetizations in the leads from parallel to antiparallel
(14). Let us consider the situation where the leads are fer-
romagnetic and the island is non-magnetic, i.e. a F/N/F
junction. The spin-accumulation causes a non-zero mag-
netoresistance. In the parallel configuration, the conduc-
tances are G1σ = G1(1+σP )/2 and G2σ = G2(1+σP )/2,
where P is the polarization of the ferromagnet. We show
in Figure 6 the calculated junction magnetoresistance for
G1 = G, G2 = 3G, Vg = 0, kBT = 0.05Ec, C1 = C2 = C
and a polarization P = 0.3 in the limit of slow spin-
flip relaxation Gs = 0 (upper curve), intermediate relax-
ation Gs/G = 1 (mid curve) and fast spin-flip relaxation
Gs = 4G (lower curve). At low source-drain bias, we ob-
serve the magnetoresistance oscillations already reported
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Fig. 6. The magnetoresistance as a function of the source-
drain voltage in a F/N/F double junction system with P = 0.3,
G1↑ + G1↓ = G, G2↑ + G2↓ = 3G, Vg = 0, C1 = C2 = 1
and kBT = 1.0. The upper curve is for slow spin-relaxation,
Gs/G = 0, the mid curve for intermediate spin-flip relax-
ation Gs/G = 1 and the lower curve for faster spin-relaxation,
Gs/G = 4.

in [11,12]. The amplitude of the oscillations decreases with
increasing source-drain voltage, thus decreasing impor-
tance of the Coulomb charging [11,12]. The period of the
oscillations for our system is close to 2Ec. There is only
a small distortion of the shape of the magnetoresistance
oscillations with increasing spin-flip relaxation rate in the
island. The oscillations in the TMR as a function of the
source-drain voltage can be understood as a consequence
of the spin-accumulation in the antiparallel configuration.
The spin-accumulation increases with increasing current
through the system. We have seen in Figure 4 that the
current has a steplike behavior with a period close to 2Ec

due to the discrete charging of the island. Hence the spin-
accumulation also shows a steplike behavior (not shown)
as a function of the source-drain voltage. The magnetore-
sistance for the F/N/F FSET increases with increasing
spin-accumulation and hence shows oscillations with a pe-
riod 2Ec. The magnetoresistance is noticeable even when
the spin-flip conductance is of the same order as the tunnel
conductances in agreement with equation (1). Disregard-
ing the Coulomb charging energy, the junction magnetore-
sistance is

JMR = P 2 1− γ2

1− P 2γ2 + α2
, (15)

where γ = (G1−G2)/(G1 +G2) is a measure of the asym-
metry of the junction conductances and α2 = 4Gs/(G1 +
G2) determines the reduction of the magnetoresistance
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Fig. 7. The current as a function of time. The source-drain
voltage is switched from V = 8Ec to V = 2Ec at t = 0. The
system parameters are Gs/G = 0.5, G1↑/G = 0.05, G1↓/G =
1, G2↑/G = 2, G2↓/G = 0.01, kBT = 0.05Ec, q0 = 0 and
C1 = C2.

due to the spin-flip relaxation. At a high source-drain bias,
the numerical results agree well with equation (15), giving
JMR = 6.9% for Gs/G = 0, JMR = 3.4% for Gs/G = 1
and JMR = 1.4% for Gs/G = 4.

So far we have shown how the spin accumulation in-
fluences the DC transport properties. Spin accumulation
also causes novel features in the AC and transient response
of the system. Let us first fix the source-drain voltage
at a high bias until the system is stationary and then
lower the source-drain voltage. The transient current re-
sponse in this situation can be reversed on time scales
of the order of the spin-flip relaxation time, which is an
unambiguous signature of a non-equilibrium spin. In or-
der to explicitly show this we solved the time-dependent
problem by numerically integrating equations (4, 7). In
the upper part of Figure 7 we show the calculated time-
dependent chemical potential difference when the source-
drain voltage is suddenly reduced at t = 0. The junctions
are described by Gs/G = 0.5, G1↑/G = 0.05, G1↓/G = 1,
G2↑/G = 2, G2↓/G = 0.01, C1 = C2 = C and the thermal
energy is kBT = 0.05Ec. We consider the high voltage case
V = 8Ec, where the associated stationary electric current
is I = 2.3Ge/2C and lower the source-drain voltage to
V = 2Ec, where the associated stationary electric current
is positive, I = 0.40Ge/2C. We have used tsf = 20RC,
which appears to be a reasonable estimate for junctions
with a Coulomb charging energy of 10 meV and a junc-

tion conductance of R/RK = 10 giving a charge relaxation
time of RC = 0.5×10−12 s. The chemical potential differ-
ence is seen to decay on a time scale much larger than the
charge relaxation time. Finally we show in the lower part
of Figure 7 the current through the first junction (full
line) and the second junction (dotted line). It is clearly
seen that the relaxation of the current is slow on the time
scale RC. For time scales up to the order of RC, the cur-
rents through the first and the second junction differ due
to the depopulation of the charge island. The Coulomb
charging effect shows up as the almost constant current
on intermediate time-scales.

In order to understand the dynamics it is useful to
inspect the device without the Coulomb charging effects,
i.e. the capacitances C1 and C2 in the equivalent electric
circuit in Figure 3. We set the voltage on the left lead
to zero and apply a time dependent potential V (t) to the
right lead. The complex impedance Zspin(ω) = V (ω)/I(ω)
is

1

Zspin(ω)
=

G1G2

G1 +G2
−
G1↑G2↓ −G1↓G2↑

(G1 +G2)

∆µ(ω)

eV (ω)
(16)

where

∆µ(ω)

eV (ω)
=

1

1 + iωτspin

G1↑G2↓ −G1↓G2↑

(Gs +G′)(G1 +G2)
· (17)

Here the spin accumulation time is

τspin =
Cs

Gs +G′
, (18)

where 1/G′ = 1/(G1↑+G2↑)+1/(G1↓+G2↓). From the re-
lations (16, 17) we see why switching-off the source-drain
voltage (Vf = 0) reverses the transient current as found in
the lower panel in Figure 7. Without the Coulomb block-
ade this transient decays on the time scale τspin. In the
limit that the junction conductances are much smaller
than the spin conductance, the spin accumulation time
(18) reduces to the spin-flip relaxation time, τspin ≈ τsf .
In the opposite limit where the junction conductances
are much larger than the spin conductance, the spin ac-
cumulation time is τspin ∼ CsR. The spin-flip capaci-
tance is much larger than the charge-capacitance C in
the regime where the orthodox theory is valid (δ � Ec)
and thus the spin accumulation time is much larger than
the charge-relaxation time. The spin accumulation time
in Figure 7 agree well with the value tspin = 0.43tsf as
can be found from the equivalent circuit neglecting the
Coulomb blockade. The spin accumulation time deviates
from equation (18) if the initial or final voltage is less
than the Coulomb charging energy [20]. We show in Fig-
ure 8 the average current through the first and the second
junction when the final voltage is zero with the same sys-
tem parameters as above (as used in Fig. 7). In this case
the non-equilibrium spin accumulation decays slower since
the spins must relax through the spin-flip conductanceGs
on the island and the transport through the junctions is
suppressed. The spin-accumulation time is then roughly
equal to the spin-flip relaxation time [20]. The transient
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Fig. 8. The average current through the first and the sec-
ond junction as a function of time. The source-drain voltage is
switched from V = 8Ec to V = 0 at t = 0. The system param-
eters are Gs/G = 0.5, G1↑/G = 0.05, G1↓/G = 1, G2↑/G = 2,
G2↓/G = 0.01, kBT = 0.05Ec, q0 = 0 and C1 = C2

response to switching on the source-drain voltage is simi-
lar. If the initial and final voltage are above the Coulomb
charging energy, the response time is determined by equa-
tion (18) otherwise the response time roughly equals the
spin-flip relaxation time.

The long time response of the system due to the spin
dynamics can also be observed in other AC transport ex-
periments. A fast single-electron transistor has recently
been realized [24]. We therefore study the influence of an
AC source-drain voltage V (t) = V0 + V1 cosωt on the DC

current through the system, Ī(ω)=ω/(2π)
∫ t0+2π/ω

t0
dtI(t),

where t0 is an arbitrary time constant. We show in Fig-
ure 9 the relative change in the DC current

R(ω) =
Ī(ω = 0)− Ī(ω)

Ī(ω = 0)
· (19)

as a function of frequency for an applied voltage which
fluctuates around the Coulomb blockade threshold volt-
age, V (t) = Ec(1 + 0.25 cosωt). The temperature is
kBT = 0.05Ec, q0 = 9 and C1 = C2. The system is
in the antiparallel configuration so that there is a spin-
accumulation on the island, G1↑/G = 1.5, G1↓/G = 0.5,
G2↑/G = 0.5,G2↓/G = 1.5,Gs/G = 0.5 and the spin-flip
relaxation time is τsf = 20RC. It is seen that the DC
current varies most strongly when ωτsf ∼ 1, which is a
consequence of the spin-dynamics in the system with the
characteristic time-scale τsf . A corresponding calculation
with the same parameters in the parallel configuration
shows no frequency dependence of R(ω) around ωτsf ∼ 1.
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Fig. 9. The time-averaged (DC) current as a function of the
frequency of the applied source-drain voltage, V (t) = Ec(1 +
0.25 cosωt). The reservoirs are in the antiparallel configuration,
G1↑/G = 1.5, G1↓/G = 0.5, G2↑/G = 0.5,G2↓/G = 1.5. The
other parameters are kBT = 0.05Ec, q0 = 9 and C1 = C2

5 Conclusions

We have investigated the effect of non-equilibrium spins on
the transport properties of a ferromagnetic single-electron
transistor. The orthodox theory is generalized to include
the spin accumulation on the island. The spin accumu-
lation is more important for small islands with a large
energy spacing. The current and the differential conduc-
tance increases with increasing spin-flip relaxation rate.
The magnetoresistance is enhanced due to the spin ac-
cumulation. The non-equilibrium spins on the island can
have a drastic effect on the transient transport properties.
We have shown that on lowering the source-drain voltage
from a high bias to a low bias, a reversed current appears
on time scales shorter than the spin-flip relaxation time.
The same slow response also appears in other AC trans-
port properties if one or more of the external parameters
are time-dependent.
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